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Estimates of the Radiological Dose
from Ingestion of 137Cs and 90Sr to
Infants, Children, and Adults
in the Marshall Islands

Abstract

In this report, we examine whether the radiological dose equivalent due to the
intake of 137Cs and 99Sr at a contaminated atoll in the Marshall Islands would be
greater when intake begins as an adult than when intake begins as an infant or
child. We found that generally 137Cs contributes 97 to 98% of the dose and 0Sr
contributes only 2 to 3%. We also found that the integral 30-, 50-, and 70-y effective
dose equivalent estimated for intake beginning as adults is greater than that for -
intake beginning at any other age. There are two factors that cause the adult
estimated dose to be greater than the dose to infants and children. The major factor
is the consistently higher intake of local foods, and consequently higher intake of
137Cs, for adults. The second is a combination of changing body weights, fractional
de})osits, and biological half-life for 137Cs with age, and the reduced concentration of
137Cs in food with time. Consequently, the estimated effective integral dose
equivalents for adults due to ingestion of 137Cs and 99Sr can be used as a
conservative estimate for intake beginning in infancy and childhood.

Introduction

The purpose of this report is to determine
whether the radiological dose equivalent due to
the intake of 137Cs and 90Sr at a contaminated
atoll in the Marshall Islands would be greater
when intake begins as an adult than when
intake begins as an infant or child.

In previous publications, we have estimated
the radiological doses to adults at several atolls
in the northern Marshall Islands resulting from
external gamma exposure and internal ingestion
of 137Cs , 90g; |, 239+240py and 241 Am (Robison
etal, 1982a, 1982b, 1987; Robison, 1983). We
have mentioned in all of these reports that the
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radiological dose from the ingestion of 137Cs
and 2051 beginning in infancy or early childhood
would lead to 30- and 50-y integral doses that
are about the same or less than similar doses
estimated for intake beginning as an adult.
These statements were based on dietary data for
the daily intake of 137Cs and 90Sr at the
Marshall Islands, differences in physiological
parameters (such as biological half-life and
deposition patterns for 137Cs and 20Sr), body
mass as a function of age, and dosimetry; we
published a preliminary evaluation of the
relative estimated radiological doses -for



infants, children, and adults in 1974 (Robison
etal, 1975).

In this report, we discuss in more detail the
methods for relative
radiological dose to infants, children, and
adults as a result of ingestion of 137Cs and s,
We have included recent data on physiological
parameters, dosimetry models, and diet.

The total dose equivalent (D) from ingestion
of a radionuclide to a person (or an organ in a
person) is the product of several factors:

estimating the

1 —
Do ;G x I x f1 x T 3
0.693

where
C; = the radionuclide concentration in
food i, pCi/g,
I; = theintake of food i, g/d,
T:.:n = the effective half-life of the
radicnuclide, d,
» fp = the fractional deposition of the

radionuclide in the body or
selected organ, unitless,

d = the dose equivalent rate
conversion constant for a unit
activity in the body, rem/pCi.

The effective half-life, Tléz, is the combina-
tion of radioactive decay (Tléz) and biological
elimination after ingestion (Tléz). This combina-
tion is Tlg/z = (ng + TlR/Z)/T:;/ :{2, or in terms of
elimination constants, Ag = AR + AB.

Including TlE/2 and f1 in an overall umbrella
of "deposition and retention,” there are four
separate categories for which data must be
available in order to estimate the dose to people
from ingestion:
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1. The diet—the g/d intake of various
foods.

2. The radionuclide concentrations in the
various foods.

3. The deposition and retention of the
radionuclides in the body.

4. The dosimetry of the ingested
radionuclides.

The combination of the dietary intake and
the concentration of the radionuclides in food
items determines the intake of radionuclides.
Consequently, the radionuclide intake is
directly proportional to the g/d consumption of
local foods at a contaminated atoll. Thus, the
relative consumption of imported and local foods
is very important for estimating the daily
intake of 90Sr and 137Cs .

These four basic categories will be discussed
and the results combined to indicate the relative
dose equivalent for infants, children, and adults.
We will use radionuclide concentration data in
local foods at Rongelap Island at Rongelap
Atoll as a specific example for the calculation.
Moreover, the relative doses established by the
methodology for the different age groups would
be the same for any atoll; only the daily intake
of radionuclides, and consequently the
magnitude of the dose, would vary among atolls
or islands within an atoll.

Because of the anticipated diverse audience
of scientists and laymen to whom this report
will be distributed, we have included a
significant literature review on the intake and
distribution, the retention, and the dosimetry of
137Cs and 905r to help lay the foundation for
the results.



Radionuclide Intake

Diet

We will first discuss the adult diet model
currently used in our dose assessments because
the fetus and infant dose will be dependent on
the intake of radionuclides by the mother.

Adult 218 y)

The estimated average intake of local
foods, i.e., those grown on the atoll, and
imported foods, i.e., those brought in from
outside the contaminated atoll, is a very
important parameter in the dose assessment;
radiological dose is directly proportional to the
total intake of 137Cs and 90Sr, which is
proportional to the quantity of locally grown
foods that are consumed at a contaminated atoll.
Therefore, a reasonable estimate of the average
daily consumption rate of each food item is
essential. There is in general, however, a
paucity of data available to develop a diet
model at the atolls.

The diet model we use for estimating the
intake of local and imported foods is presented
in Robison et al. (1980 and 1987). The model
results for the case where imported foods are
available are summarized in Table 1. The basis
of this diet model was the survey of the Ujelang
community in 1978 by the Micronesian Legal

" Services Corporation (MLSC) staff and the
Marshallese school teacher on Ujelang; details
of the MLSC diet summary are presented in our
1980 dose-assessment paper (Robison et al.,
1980). This survey is the best estimate of the
current dietary practices of the Enewetak
people. Data are presented for women, men,
teenagers, and children. Adult intake exceeded
those of teenagers and children, and the intake
of local food was about 20% greater for women
than for men. The higher intake attributed to
women is unexplained, and certainly
questionable. It is, however, indicative of the
acknowledged uncertainty in the dietary
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estimates. Nevertheless, we believe that the
MLSC survey provides a reasonable basis for
estimating dietary intake. Pending the
availability of empirical data, we have chosen
to use the higher (female) diet for our diet
model, rather than attempt further speculative
refinement.

Qur choice of this diet model is supported
by other considerations. The estimated intake
of coconut is higher in the Brookhaven National
Laboratory (BNL) diet than in our diet model
(Naidu et al., 1980); this difference arises in
part from the fact that the BNL estimates were
for food prepared rather than for food actually
consumed. A more detailed comparison of the
Ujelang diet survey with higher dietary intakes
estimated by the BNL is also discussed in the
1980 report (Robison et al., 1980). When the
estimated body burdens from both our dose model
using the MLSC diet and the BNL diet are
compared to actual whole-body measurements of
the Rongelap and Utirik people made by
another BNL team, the MLSC diet predicted
observed body burdens better than the BNL diet
(Robison, 1983; Robison et al., 1987). In fact,
predictions of body burdens and doses using our
diet model are very close to the whole-body
measurements of the population, as is
illustrated in Table 2.

Further support of our diet model is found in
the estimates of coconut consumption. The
coconut, at many stages of growth, is the food

' L

product that is of major significance and
dominates the potential exposure of people. The
current estimate of consumption of coconut meat
and fluid in our diet mode!, which is about 1 to
1.5 coconuts per day per person averaged over a
year, is consistent with estimates of an average
of 0.5 and 1.0 coconuts per day per person made
by two Marshallese officials with considerable
experience on living habits at outer atolls
(DeBrum, 1985). Based on data published by

Mary Muari in 1954, the average intake of



Table 1. Dietary intake of local and imported foods used in the dose assessments.

| Children Teenage Adult
1.5-3 years 4-11 years 12-17 years >18y
' Food grams/d grams/d grams/d grams/d

Dietary intake of local foods when imports are available

Reef fish 7.66 13.8 15.6 242

Tuna 9.04 121 15.0 13.9

Mahi mahi 3.84 3.76 5.44 3.56
Marine crabs NR 0.09 0.40 1.68
Lobster 1.33 4.48 2.66 3.88
Clams 1.60 4.65 8.12 4.56
Trochus NR NR 0.35 0.10
Tridacna muscle 0.49 1.53 1.09 1.67
Jedrul 1.25 3.47 1.47 3.08
Coconut crabs 1.98 2.23 3.51 3.13
Land crabs NR NR 0.16 NR
Octopus 1.66 2.14 6.17 4.51
Turtle 0.67 1.54 2.77 : 4.34
Chicken muscle 1.65 5.49 5.79 8.36
Chicken liver 1.78 2.70 2.57 4.50
Chicken gizzard NR NR 0.12 1.66
Pork muscle 2.58 3.90 3.52 5.67
Pork kidney NR NR 'NR “NR
Pork liver 1.08 1.15 2.71 2.60
Pork heart NR NR NR 10.6

Bird muscle 1.15 2.82 6.51 2.71
Bird eggs 0.19 0.24 6.42 1.54
Chicken eggs : 2.02 5.12 3.03 7.25
Turtle eggs 1.01 1.26 1.87 9.36
Pandanus fruit 9.84 440 6.12 8.66
Pandanus nuts 0.35 0.83 0.56 0.50
Breadfruit 9.90 . 9.41 17.8 272

Coconut juice 46.6 44.9 ' 64.3 99.1

Coconut milk 311 37.1 57.2 51.9

Tuba/Jekero - 0.80 NR NR NR
Drinking coco meat 16.9 : 12.5 26.3 . 317

Copra meat 3.40 6.12 15.3 12.2

Sprouting coconut 143 7.23 5.01 7.79
Marsh. cake 4.65 11.0 7.65 11.7

Papaya NR 5.62 NR 6.59
Squash NR NR NR NR
Pumpkin 0.04 0.04 : 4.01 1.24
Banana 0.02 NR NR 0.02
Arrowroot 0.24 0.10 -NR . 393
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Table 1. (Continued)

Children Children Teenage Adult
1.5-3 years 4-11 years 12-17 years >18y
Food grams/d grams/d grams/d grams/d
Citrus NR NR NR " 0.10
Rainwater 166 204 206 313
Wellwater 115 139 139 207
‘Malolo 122 191 106 199
Coffee/tea 161 137 190 228
Total Local Foods 743 883 940 1332
Fluids 611 716 705 1046
Solids 132 167 235 286
Dietary intake of imported food
Baked bread 10.5 211 23.5 30.3
Fried bread 262 435 52.8 72.0
Pancakes 25.2 38.4 43.7 59.5
Cake 1.54 1.23 1.68 2.64
Rice 97.0 ) 154 - 211 234
Instant mashed potatoes 490 80.3 135 127
Sugar 449 55.7 67.6 65.2
- Canned chicken 9.13 7.42 5.35 12.97
Corned beef 21.7 56.3 72.0 78.7
Spam 19.1 322 46.1 - 55.0
Canned mackerel 14.7 321 345 44.0
Canned sardines 11.8 29.7 41.8 42.5
Canned tuna 17.0 38.5 48.6 59.0
Canned salmon 0.11 : NR NR NR
Other canned fish NR NR NR NR
Other meat, fish, or NR 48.7 NR NR
poultry
Carbonated drinks 171 227 286 338
Orange juice 68.1 100 118 188
Tomato juice 15.6 45.7 69.5 99.5
Pineapple juice NR 148 155 178
Other canned juice 3.20 095 . NR 254
Evaporated milk 103 137 154 .20
Powdered milk 19.7 61.1 93.4 729
Whole milk NR NR 0.00 0.00
Canned butter NR NR NR 0.00
Onion NR 0.06 0.00 ' 0.00
Canned vegetables 244 NR NR NR
Baby food 68.2 NR NR NR
0000159



Table 1. (Continued)

Children Children Teenage Adult
1.5-3 years 4-11 years 12-17 years >18y
Food grams/d grams/d grams/d grams/d
Cocoa NR NR NR 178
Ramen noodles NR NR 6.07 6.07
Candy 0.53 0.53 NR NR
Total Imported Food . 822 1359 1666 2168
Fluids 381 720 876 1281
Solids 441 639 790 ‘ 887
Total Local and _
Imported Foods 1565 2242 2606 3500
Fluids 992 1436 1581 2327
Solids 573 806 1025 1173

Note: NR stands for no response.

a Data from Robison et al. (1982a), Appendix A.

coconut products was drinking coconut fluid,
95 mL/d; copra meat, 48 g/d; and drinking
coconut meat, 10 g/d; however, sprouting coconut
was not mentioned (Murai, 1954). The total
intake is essentially the same as the results of
the Ujelang Survey. It might be noted that
consumption of local foods in 1954 was higher
than today. In addition, the Bikini Atoll
Rehabilitation Committee (BARC) recently
asked the Bikini people for a survey on coconut
consumption at Kili Island and Majuro (BARC,
1986). The result of this limited survey was
that coconut consumption was about one-third
that indicated in the MLSC diet listed in
Table 1. Similarly, in the summary of a survey
conducted during July and August of 1967 at
Majuro Atoli, the average coconut use was
reported to be approximately 0.5 coconut per day
per person {Domnick and Seelye, 1967). This
included young drinking coconuts, old nuts used
for grated meat and pressed for small volumes of
milk, and sprouting nuts used for the sweet, soft
core. Finally, recent data from Eneu Island
shows that an average drinking coconut contains
325 mL of fluid (standard deviation equals
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125 mL), so that even if the entire average
coconut use of 0.5/d were all drinking nuts, the
average intake would be about 160 g/d. This is
in agreement with the results from the MLSC
survey at Ujelang. Experience at Enewetak
Atoll also supports our model. During the past 2
or 3 years, coconuts have been brought to
Enewetak Atoll from Ujelang Atoll. Sufficient
quantities have been available for the average
consumption rate to have been 1 coconut per day
per person if all coconuts were consumed.
However, all the coconuts were not consumed;
some were discarded or fed to pigs, and thus the
average coconut consumption rate has been less
than 1 coconut per person per day (Wilson, 1985).

In short, the average coconut consumption
rate in our diet model appears somewhat higher
than that from most other sources of information
we have found, except the BNL report.

Another way to evaluate the general
validity of a proposed diet model is to
determine the total daily intake in terms of
mass and calories. Table 3 lists a summary of
the grams per day (g/d) intake in our diet model
compared with average U.S. and Japanese diets.



Table 2. Comparison of predicted and measured body burdens of 137Cs for three atolls in the

Marshall Islands.

Predicted 137Cs adult body burdens in pCi

Measured 137Cs body

LLNL diet model

burdens in pCi in

Atoll Imports available  Imports unavailable BNL diet? 1978

Bikini 55 11 ~20 2.4 (M); 1.7 (F)
Rongelap 0.19 0.42 0.58 0.17 (A) .
Utirik 0.043 0.098 0.18 0.053 (A)

2 Naidu et al., 1981.

b (M) stands for male, (F) stands for female, and (A) stands for adult; BNL data, (Lessard et al., 1980a,

1980b; Miltenberger et al., 1980).

Also listed are the kilocalories per day (kcal/d)
intake for the diet model when imported foods
are both available and unavailable.

The intake of 1450 g/d including milk
products in our diet model when imported foods
are available is higher by about 200 to 400 g/d
than the results from the U.S. and Japan
surveys. The 3003 kcal/d in the diet model
exceeds the U.S. average by a little more than
1000 kcal/d. The average recommended
allowances for caloric intake range from 2000 to
3200 kcal/d, and individual recommended
allowances from 1600 to 4000 kcal/d (Committee
for Revision of the Canadian Dietary Standard,
1964; Food and Agricultural Organization, 1957;
ICRP, 1975; National Academy of Science, 1980).
It appears that the U.S. population average
intake seldom reaches these high recommended
levels.

This comparison shows that our diet model,
based upon the MLSC survey at Ujelang Atoll, is
not seriously at variance with the U.S. and
Japanese data for g/d intake or for total daily
calories consumed. It appears likely that the
overall error is in the conservative direction of
overestimating total intake.

The estimates for "Imported Foods
Unavailable" scenario (Tables 2 and 3) are
based upon the assumption that no imported
foods are available; that is, people would
consume only local foods for their entire
lifetime. Our observation is that in today's
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world this is quite unrealistic. The demand is
present, suppliers and commercial transport are
available, and the people have cash in hand.
Even though resupply schedules may be
somewhat erratic, inventories of imported foods
are expected to be such that the total absence of .
imported foods from the diet is most unlikely.

A final consideration for the diet model is
the predicted amount of calcium. Dietary
calcium has to be considered because most models
for 99Sr dosimetry depend on strontium/calcium
ratios (Papworth and Vennart, 1973, 1984;
Bennett, 1973, 1977, 1978; Cristy et al., 1984;
Leggett et al., 1982). Generally, the models are
designed based on the assumption that the daily
intake of calcium is about 0.9 g, as it is in the
United States and Europe. The estimated
calcium intake for the diet model is 0.85 g/d,
which we believe validates the applicability
of the model for 295r dosimetry.

A few general conclusions can be drawn from
evaluating all the available data on dietary
habits in the Marshall Islands. )

1. Coconut meat and fluid consuraption is
the major source of 137Cs intake in the
diet model; the diet model does predict
the 137Cs burden observed in actual
whole-body counting of the adult
population for two atolls.

2. The dietary habits are, to a degree,
atoll specific and should be generalized
from one atoll to another only when



RS T

e e

Table 3. Comparison of the average adult diet model for the Northern Marshall Islands with the
average adult diet for the United States and for Japan.

Average adult diet
model for the Northern
Marshall Islands

Average adult diet
for the United States

Average adult diet
for Japan

Yang and Abraham

Japan's

Imports Imports

Nelson, et al., 1979 Rupp,

Hisamatsu Ministry of

available unavailable 1986 1980 etal, 1987 Health?

Food intake, g/d 1450 900 1066 _ 1232 1253 1352
Fluid intake, g/d 2326 758 1526 — 1351 — —
Caloric intake,
kcal/d 3231 1256 1853 1925 — — —

a Reported by Hisamatsu et al. (1987).

b Milk is listed under both food and fluid intake.

supporting atoll-specific data are Children (4 to11y)

unavailable.

3. There’is still some uncertainty about
what the average diet really is at any
atoll.

4. Many factors can affect the average diet
over any specific year.

5. Further atoll-specific dietary data are
needed to improve the precision of the
dose assessment for each resettlement
situation.

6. Even though there is some uncertainty in
the precise adult diet at an atoll, the
relative difference in average intake
between adults and infants and children
are consistent between the two surveys
(Robison et al., 1980; Naidu et al., 1980).

Teenage (12to 17 y)

The average total daily intake of food for
this age is very similar to that of adults.
Although the average intake is somewhat less
than for adults, some individuals at the older
end of the age group may well exceed the
average adult intake (Robison et al., 1980).
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At this age, the children are essentially on
a diet similar to that of the adults. The intake
of drinking coconut fluid and coconut milk may
approach that for adults, but diet surveys
indicate it to be less (Robison et al., 1980; Naidu
et al.,, 1980). Consumption of other food
products, both local and imported, is less than
that of adults (Robison et al., 1980; Naidu et al.,
1980).

Children (1.5to 3 y)

At about 1.5 y, children are weaned from
breast- or bottle-feeding with mixtures of soft
rice and tea, or flour boiled in water and mixed
with tea, and/or foods cooked for longer periods
of time to make them softer in texture (Marsh,
1973; Pollock, 1974). Flaherty (1988) mentions
that rice or flour-tea mixtures are preferred even
if local dishes such as Pandanus pudding and
breadfruit soup are available. This weaning
leads to a diet by about age 2 that is similar in
composition to the adult diet, but with total
intake being significantly less than that for
teenagers or adults (Robison et al., 1980, 1982a;



Naidu et al., 1980). The relative difference in
intake between the 1.5-y to 3-y age group and
adults is nearly the same for both major diet
surveys (Robison et al., 1980; Naidu et al., 1980).

Infant/Child (9 months to 1.4 y)

Both breast-fed and bottle-fed infants,
starting around 9 months, occasionally are given
small amounts of soft crab, fish, breadfruit,
papaya, and pumpkin (Marsh, 1973; Pollock,
1974; Hinshaw, 1988). These additional local
foods would probably be no more than 20% of the
adult intake.

Infants (4 to 8 months)

The diet of infants 4 to 8 months old in the
Marshall Islands varies depending on a
mother’s preference and the mixture of locally
grown and imported foods applicable to a
specific atoll. In general, however, infants are
usually breast-fed for the first 12 to 18 months,
and sometimes for as long as 2 years (Marsh,
1973; Pollock, 1974; Flaherty, 1988; Hinshaw,
1988). Bottle-fed babies occasionally are given
coconut fluid or milk if formula becomes scarce
and breast-fed babies may also be given small
quantities of coconut milk.

In summary, the infant (4 to 8 months) diet
in the Marshall Islands consists primarily of
milk either by breast-feeding or bottle-feeding
with occasional, small supplements of coconut
milk or coconut fluid.

Infant (0 to 3 months)

The diet of infants in the Marshall Islands
varies depending on a mother's preference.
Infants are either breast-fed, which is the most
usual case, or they are bottle-fed with formula
and evaporated milk (Marsh, 1973; Pollock,
1974; Flaherty, 1988; Hinshaw, 1988). Our
general observation is that the use of formula
and evaporated milk for feeding infants has
increased over the past few years. In either

case, the total diet consists of one or the other

over the first 3 to 4 months.
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Radionuclide Concentrations in Local
Foods at Rongelap Island

The concentrations of radionuclides in foods
at Rongelap Island at Rongelap Atoll are listed
in Table A-1.

The listed concentrations are from the
Northern Marshall Islands Radiological Survey
completed in 1978 and additional sampling done
by LLNL in 1985 and 1986.

Intake of 99Sr and 137Cs from Ingestion
of Local Foods

Strontium-90

Newborn/Fetus. Work conducted during the
height of the atmospheric nuclear testing
program, when 90Sr in milk was of concern,
indicates that the OR"e—Wb—T‘f\;ﬁﬂ—us = 0.5, where
the OR is a term coined by Comar et al. (1956),
and is defined as the ratio of the pCi 90Sr per g
of calcium in a target organ divided by the pCi
90y per g of calcium in a reference source. In
other words, the discrimination against
strontium compared to calcium across the
placental barrier is about a factor of 2 (Bryant
and Loutit, 1964; Comar et al., 1965; Kawamura
et al., 1986; Tanaka et al., 1981). Furthermore,
the ORZS%— = 0.25 (Bryant and Loutit, 1964;

Comar et al., 1965). Consequently, the

’ ORM which includes the discrimination

adult diet’
across the placental barrier, is 0.25 x 0.5 = 0.13

(Bryant and Loutit, 1964; Lenihari, 1967; Comar
et al., 1965).

The OR™™ of 0.5 means that half as
much 20Sr per g of calcium is present in the
newborn/fetus as the adult, and the dose
received by the newborn/fetus will be a
combination of this lesser 90Sr concentration and
the difference in dosimetry for a fetus versus an
adult.

Infant (0 to 3 months). As was discussed in
the diet section, the major source of food for




infants through about 3 months is either breast
milk or formula. Formulas are imported and
contain very low concentrations of 905 ¢
representative of worldwide background
concentrations.

The concentration of 90Sr in breast milk ma

be determined from the OR. The ORI =k

adult diet
has been reported to be 0.10 (Lough et al., 1960;

Comar, 1967), indicating a discrimination across
the mammary barrier similar to that across the
placental barrier. The OR is based upon the 90sr
per g of calcium and consequently is not directly
of use in dose calculations. The total g of calcium
in the reference and target must be known so that
the total amount of 90Sr transferred from a
specific source to a specific target can be
determined.

A more convenient form for the data for dose
calculations to infants using current models is the
90Sr concentration per kg of mothers' milk based
on the mothers' dietary intake. The average
percentage of 90Sr ingested that is secreted per
kg of milk was determined to be 0.31% for
4 women (Lough et al, 1960). Using this
average value for the percentage of 90Sr
ingested that is secreted in milk and the
average 20Sr daily intake of 14 pCi/d at
Rongelap Atoll for women, the concentration of
905y per kg (~1 L) of milk would be 0.043 pCi/kg.

Thus, assuming that an infant's diet is about
1.3 L/d of milk, the daily intake of ?0Sr from
birth through 3 months would be 0.056 pCi/d.

The OR‘%{.I':;?—t in the first few months after
birth is about 0.9 {(Comar et al., 1965; Bryant and

Loutit, 1964; Lough et al., 1963; Comar, 1967);

that is, the infant nearly equilibrates with his
diet. The Ol'{b—:iic-j;{Z changes to about 0.5 by 1 y
(Bryant and Loutit, 1964; Comar, 1967;
Kawamura et al., 1986) and levels out at about
the adult value of 0.25 by age 3 to 5 y (Lough
etal., 1960, 1963; Comar et al.,, 1965; Comar,
1967; Burton and Mercer, 1962). This type of
information has been incorporated in the
retention model discussed later in the paper.
Infant (4 to 8 months). We assume that
infants from 4 to 8 months occasionally receive
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diluted coconut milk to supplement or replace
the milk from breast- or bottle-feeding. For a
daily total intake of 1.3 L/d, we assume that, on
the average, 95% of the daily intake is breast
milk and 5% is a mixture of equal parts coconut
milk and water. Consequently, the daily intake
of 2Sr from 4 to 8 months would be

0.043 pCi/L(0.95)1.3L/d

+0016 pCi/mL%@ 1300 mL/d

=0.053 pCi/d + 0.52 pCi/d
=057 pCi/d,

where the concentration of 9Sr in coconut milk
at Rongelap Island is 0.016 pCi/mL and in breast
milk is 0.043 pCi/L.

Infant/Child (9 months to 1.4 y). At about
age 9 months to 1.5 y, small quantities of local
foods are given to the infants to supplement
breast-feeding. The estimated 905r intake from
consumption of local foods is assumed to be 20%
of the adult intake and is 2.8 pCi/d. Thus, the
daily intake of 20Sr is assumed to go from the 4- -
to 8-month-old value of 0.57 pCi/d to about
3.4 pCGi/d. '

Child (1.5 y to 3 y). The average daily
intake of 90Sr for the 1-y to 3-y age group from
our diet model is 9.2 pCi/d (Appendix A,
Table A-2).

Child (4 y to 11 y). The average daily
intake of 905r for children 4-y to 11-y old from

- our diet model when imported foods are
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available is 8.2 pCi/d (Appendix A, Table A-3).

Teenage (12 y to 17 y). The average daily
intake of 90Sr for teenagers from our diet model
when imported foods are available is 11 pCi/d
(Appendix A, Table A4).

Adult (> 18 y). The average daily intake of
90Sr for adults from our diet model when
imported foods are available is 14 pCi/d
(Appendix A, Table A-1).

The daily intakes of 90Sr for the various
age groups, based on the data and assumptions
described above, are summarized in Table 4.



Table 4. Estimates of the daily intake of %0Sr
from local foods by age at Rongelap Atoll.

Age 905r intake, pCi/d

0 to 3 months 0.056

4 to 8 months 0.57

9monthsto 14y 3.4

1.5yto3y 9.2

4ytolly 8.2

12yto17y 11

218y 14
Cesium-137

Newborn/Fetus. The concentration of 137Cs
in the fetus in the early months of pregnancy
appears to be less than that of the mother
(linuma et al., 1969) and about equal to that of
the mother in the latter months of pregnancy
and at birth (linuma et al., 1969; Wilson and

Spiers, 1967). Thus, the average concentration of~

137Cs during the entire gestation period would
appear to be somewhat less than that of the
mother.

Infant (0 to 3 months). The entire diet for
this age range is essentially breast milk or
formula. Measurements of 137Cs in breast milk
and in the diet of a 24-y-old woman show that
about 30% of the ingested 137Cs is secreted perL
of milk (Aarkrog, 1963). Consequently, with the
infant diet being breast milk, the intake of 137¢Cs
by an infant would not exceed the adult intake.
In fact, measurements of 137Cs in the infants and
their mothers show that the concentration of
137Cs in infants on breast milk never exceeded
the 137Cs concentration in their mothers (Rundo,
1970); the infant's 137Cs concentration, on the
average, was 75% of the mother. Using the
value of 30% for the 137Cs ingested that is
secreted per L of milk and the average adult
intake of 1085 pCi/d, the 137Cs concentration in
breast milk would be 326 pCi/L. If the average
milk intake by the infant is 1.3 L/d, the average
daily intake of 137Cs for an infant is 424 pCi/d.
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Infant (4 to 8 months). For infants between 4

" and 8 months, we assume that diluted coconut

milk is given occasionally to supplement or
replace breast milk. On the average, breast
milk accounts for 95% of the 1.3 L/d intake and a
mixture of equal parts water and coconut milk
make up the other 5%. The daily intake of
137Cs is thus:

326 pCi/L (09513 L/d

(0.05) .
+ 1300 mL/d 5 4.7 pCi/mL
=403 pCi/d + 153 pCi/d

=556 pCi/d

where the 137Cs concentration in coconut milk-is
4.7 pCi/mL and in breast milk is 325 pCi/L.

Infant/Child (9 months to 1.4 y). Breast
milk or formula is still the main food source for
infants/children in this age group, but small
amounts of local foods are given to the infants to
supplement the milk. We assume the 137Cs
intake to be no more than 20% of the aduylt
intake. Consequently, the 137Cs intake from
breast and coconut milk is 556 pCi/d, as for
infants 4 to 8 months (see above), plus 217 pCi/d
(0.20 x 1085 pCi/d) from local foods, for a total
daily intake of 773 pCi.

Child (1.5 y to 3 y). The average daily
intake of 137Cs for children aged 15y to 3 y
from our diet model when imported foods are
available is 517 pCi/d A,
Table A-2).

Child (4 y to 11 y). The average daily
intake of 137Cs from our diet model for children
aged 4 y to 11 y, when imported foods are
594 pCi/d (Appendix A,

(Appendix

available, is
Table A-3).

Teenage (12 y to 17 y). The average daily
intake of 137Cs for teenagers from our diet model
when imported foods are available is 761 pCi/d
(Appendix A, Table A-4).



Adult (> 18 y). The average daily intake of
137Cs for adults is obtained from our diet model.
When imported foods are available, the intake
is 1085 pCi/d (specific data are presented in
Appendix A, Table A-1).

A summary of the 137Cs intake by age group
is given in Table 5.

Table 5. Estimates of the daily intake of 137Cs
from local foods by age group at Rongelap Atoll.

Age 137Cs intake, pCi/d
0 to 3 months 424
4 to 8 months 556
9monthsto 14y 773
15yto3y 517
4ytolly 594
12yto17y 761
218y 1085

Retention of 137Cs and 90Sr

Cesium-137

Fetus

The fetus is assumed to be in dynamic
equilibrium with the mother. Experimental
results indicate that in the first few months of
pregnancy the ratio of the 137Cs concentration in
mothers to that in the fetus is 3:1, changing to
about l:l in last months (linuma et al., 1969;
Nagai, 1970). Consequently, the dose received
by the fetus should be no more and perhaps less
than that received by the adult mother (linuma
et al., 1969; Nagai, 1970).

In addition, the biological half-life of
137Cs is shorter in pregnant women than in
nonpregnant women, leading to lesser body
burdens in pregnant women (Bengtsson et al,,
1964; Zundel et al., 1969; Godfrey and Vennart,
1968). Consequently, the dose to pregnant women
would be less than to nonpregnant women. Based
on data presented by linuma et al. (1969), the
dose to the fetus would be about half that
calculated for an adult.

Infants, Children, Adolescents, and Adults

It is assumed that when 137Cs is ingested,
100% of the 137Cs crosses the gut and enters the
blood, ie., F; = 1.0 (NCRP, 1977; ICRP, 1979).
The loss of 137Cs from the body is then generally
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represented by a two-compartment, exponential
model, adults the short-term
compartment has a biological half-life (T?/2) for
137Cs of 2 d for both males and females, and the

long-term compartment a T'/20f 110 d and 85 d

where for

for males and females, respectively (ICRP, 1979;

NCRP, 1977; Richmond et al., 1962). In some
cases, the loss of 137Cs is better represented by a
three-compartment model (Leggett et al., 1984),
but generally the short-term compartment in the
two-compartment model represénts an average
of compartments with half-lives the order of a
few hours, a few days, and 1 or 2 weeks. The
fractional deposition of 137Cs in the model for
the short- and long-term compartments for
adults is 0.10 and 0.90, respectively (ICRP, 1979;
NCRP, 1977). These fractional depositions and
half-lives represent a model for an average
aduit around which particular individuals will
vary.

The long-term compartment is the most
significant compértment for dose assessment, and
there is abundant evidence in the literature that
shows the long-term T!/2 changes dramatically
with age from birth to adulthood (Lloyd etal.,
1966, 1970; Wilson and Spiers, 1967; Boni, 1969;
linuma etal, 1969; Weng and Beckner, 1973;
Lloyd, 1973; Cryer, 1972; Karcher et al., 1969;
Richmond et al., 1962). The T'/2 for 137¢s ranges
from 10 to 12 d in infants (Wilson and Spiers, "'



1967; Lloyd, 1966), to 20 to 50 d for children
(Karcher et al., 1969; Boni, 1969; Naversten,
1964; Bengtsson et al., 1964; Lloyd et al., 1966,
1970), and to 110 d and 85 d for adult men and
women (Richmond et al., 1962; Van Dilla, 1965;
Boni, 1969; Lloyd, 1966; Lloyd et al., 1970; ICRP,
1979; NCRP, 1977). Leggett (Leggett, 1987)
indicates that the long-term T1/2 is about 22 d for
newborns, decreases to about 13 d by 1 y, and then
begins to increase again to about30d by 5 y.

In addition to the change in T'/2 with age,
the fractional deposition of 137Cs in the short-
and long-term compartments also changes
(Leggett et al., 1984). The fractional deposition
for newborns is 0.5 in the short-term
compartment and 0.5 in the long-term
compartment; this gradually changes to 0.10 and
0.90 for the short- and long-term compartments,
respectively, for adults. Table 6, abstracted
from Leggett (1987), shows the change with age
for the total body potassium, fractional
deposits, and T1/2.

Models have been proposed indicating that
the long-term T'/2 for 137Cs is correlated with
age (Boni, 1969; McCraw, 1965; Weng and’
Beckner, 1973; Fisher and Snyder, 1967), body
weight (Eberhardt, 1967; Cryer, 1972), and sex
(Clemente et al., 1971; Boni, 1969). However,
Lloyd (1973) has indicated that the correlation

with body weight and age is only signifiéant
when infants, juveniles, and teenagers are
included and that there is no correlation with
either for adult males or adult females
(Karcher, 1973; Cryer, 1972). The only
significant difference in T'/?2 among adults is
that between males and females where there is
a distinct difference in the average body weight
(Lloyd, 1973; NCRP, 1977; ICRP, 1979). The
average biological half-life for 137Cs in
Japanese males, whose average body weight is
significantly less than for U.S. and European
males, was determined to be about 85 d
(Uchiyama et al., 1969; Fujita, 1966). Lloyd
indicates that it is more likely that the T!/2 for
137Cs is correlated with some other factor
common to age, body weight, and sex.

Leggett (1986, 1987) has recently shown
that the strongest correlation for the biological
half-life of 137Cs appears to be with the total
amount of potassium (K) in the body. The model '
proposed by Leggett is the standard two-
compartment model of the form:

Al = a é'0‘693 t/Tr (1_a)é0.693 t/T> ,

where ‘
A() = the 137Cs activity in the body at
time t after ingestion,

Table 6. Estimated compartmental fractions and half-times in the age-dependent retention function

for cesium.
Short- plus
Short- plus intermediate-
intermediate- term T1/2 Long-term Long-term T'/2
Age Total-body K term fraction (days) fraction (days)
Newborn 5.2 0.60 22 0.40 22
100 days 114 0.60 16 0.40 16
| year 20.8 0.60 13 0.40 13
5 years 42.7 0.45 9.1 0.55 30
10 years 71.0 0.30 58 0.70 50
15 years 1314 013 22 0.87 S .93
Adult 150 0.10 1.6 0.90 107

5000161



the fractional deposition of the
ingested 137Cs in the short-term
compartment,

the fractional deposition in the
long-term compartment,

the biological half-life of 137Cs
in days the short-term

(1-a) =

in
compartment,
the biological half-life of 137Cs
days in the
compartment.

T =

in long-term

The biological half-life and fractional
deposition for both compartments are
determined by the total potassium, K, in the
body. Values for the grams of potassium in the
total body, taken from Leggett 1987, were used
with a polynomial interpolation to generate K
for other ages. The body weight as a function of
age, My, in kg, is taken from ICRP (1975) and
represented with equations developed by Adams
(1981). The body weight as a function of age is
shown in Figs. 1 and 2.

The mass of most body organs is assumed to
be proportional to total pody mass; the
proportionality is established by the ratio of a
specific organ mass to the body mass of a
standard adult. Thus, the organ mass as a
function of age is also based on the ICRP age-
dependent body weights.

The biological half-lives and fractional
depositions for males are then determined from
the following equations (Leggett, 1986, 1987):

T1=Ty=-09K;+265 (Gg<Ki<l5g),

Ty =Ty =13 (15g<Kt<20g),

Ty =-122 +0.72K¢ ) ¢
} (Kt > 20 g)

T1 =18 e(-0.016K))
a=06 (5g<K¢<20g),

a =081 e(0.014Ky (Ke>20g) .

00001568
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The model for females is the same as for
males up to a K mass of K = 43 g. The model for
females is then represented by the following
equations:

Ty=-171+ 109K, (K> 43 g),
Ty = 14 (001 Kp (Ky>43g),
a =089 e(-0016 Ky (K¢>43g).

The biological half-life of 137Cs for
Marshallese children of various ages has been
measured by BNL (Lessard et al., 1979) and can
be compared with those predicted using the
model described above. The average T'/? for
137Cs for 14 children ages 5 to 10 was 43 d; the
average from the model is 40 d. For the 11- to
15-y age group, the BNL wholebody counting of
9 children gave a T!/2 of 70 d; the model value
for this age group is 72 d. Thus, the model
predictions are quite good for the Marshallese
children.

Strontium-90

Infants, Children, and Adults

The cycling and retention of ingested 905r is
much more complex than that for ingested 137Cs.
The development and changing physiology of
bone structure from birth to adulthood greatly
affects retention and discrimination factors for
90Sr and also deposition patterns in the various
compartments of developing bone. For example,
the distinct cortical (compact bone) and
trabecular (cancellous) bone compartments in
adults are not nearly as well differentiated in
infants. Turnover times of calcium and strontium
due to bone modeling are much more rapid in
infants and children than adults, and the Sr/Ca
discrimination factors and the gut transfer of
90Sr change markedly with age. Rather than
attempt a detailed discussion of bone
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Figure 1. Body weight as a function of age,
1to18y.

"development and Ca/Sr metabolism as a

function of age, the reader is directed to papers
by the authors of the various age-dependent
90Sr dose models and their associated references
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Figure 2. Body weight as a function of age,
0 to 12 mo. ‘

(ICRP, 1972; Cristy et al,, 1984; Leggett et al.,
1982, 1984; Papworth and Vennart, 1973, 1984;
Spiers, 1968; Bennett, 1973, 1977, 1978).

Dosimetry

Cesium-137

The conversion from the intake of 137Cs to
the dose-equivalent rate and integral dose
equivalent is based upon the ICRP methods
described in ICRP Publication 30 (ICRP, 1979).
For charged-particle emission, the basic ICRP
methodology is adjusted for age dependence by
using body weights (and organ weights) for
various ages determined by methods described in
the "Retention” section of this paper. It is
assumed for charged-particle emissions that all
of the energy is deposited in the organ that
contains the activity, i.e., the source (S) organ,
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and that no energy is transferred to any other
organ, i.e., target (T) organ. In other words, for
charged particles, the source organ is also the
target organ. As a result, the specific effective
energy, SEE, (T« S), in meV/g per
transformation, changes proportionally with
mass for the standard adult; the relationship as
a function of age is

(SEE)¢ = Z2 (SEE)saulc ,
M.

where (SEE),qy, is the ICRP value for standard
man, 70 kg is the mass of standard man, and My is
the body or organ mass at age t. This is the basis
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of the generic method described by Adams (1981)
and by Leggett et al. (1984).

The calculation for photon emissions is more
complex because the entire energy of the photon
is not absorbed in the source organ. As the body
and organ size become smaller, a larger portion
of the energy escapes the source organ and the
relative position of the organs is significant.
Consequently, if the charged-particle-emission
concept is used for making age-dependent
adjustments for the total energy released per
transformation for a radionuclide like 137Cs
that has both charged-particle and photon
emissions, the actual dose for infants and
children will be overestimated. However, this
procedure can be used for 137Cs for a quick,
conservative approach to the relative dose from
137Cs as a function of the age at intake.

Leggett et al. (1984) and Cristy and
Ekerman (1987a to 1987g) have calculated age-
dependent energy deposition factors (S factors)
that account for changes in deposition of photon
energy as a function of size (i.e.,, age). The
results are based on Monte Carlo calculations in
various sizes of computer-generated phantoms;
the S factors are presented for newborn, 1-y-old,
5-y-old, 10-y-old, 15-y-old males, and adult
females and adult males. Values for other ages
are obtained by linear interpolation.

We have combined the age-dependent
modifications to the ICRP model for charged-
particle emissions for the beta-particle
emissions (E = 0.51 meV) from 137Cs and the
methods of Leggett et al. (1984) and Cristy and
Ekerman (1987a to 1987g) for the photon
emission (E = 0.66 meV) associated with 137Cs
decay to generate the final age-dependent dose
conversion factors.

The biological half-life of 137Cs is
determined as a function of mass (i.e., age) by
the methods described in the "Retention”
section.

The age-dependent energy deposition
factors and biological half-life are combined to
adjust the ICRP dosimetry methods for 137Cs to
an age-dependent model.
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Strontium-90

Several models have been developed over
the years to estimate the cycling and retention
of 90Sr in the body as a function of age to
calculate age-dependent dose conversion factors
(Kulp and Schulert, 1962; Rivera, 1967; Bennett,
1973, 1977, 1978; Klusek, 1979; Papworth and
Vennart, 1973; Leggett et al,, 1982). We have
previously used both the model developed at
EML (Rivera, 1967; Bennett, 1973, 1977, 1978;
Klusek, 1979) and that of Papworth and Vennart
(1973). The two models give very similar
results, with the biggest difference in results
occurring for persons between ages 5 and 15 y.
Both models are empirical models based on
measurements of 90Sr in the diet and
corresponding measurements of 905 in autopsy -
bone samples. The retentions and turnover rates
and discrimination factors in the models are
determined by regression analysis or equation
solution-fitting of the observed data. No
particular correlation is made with bone
compartments, as outlined by the ICRP (1972,
1$79), in the EML model, but Papworth and
Vennart's model does include the two
compartments of compact and cancellous bone.

A recent model developed by Leggett et al.
(1982) is based on the structure and function of
bone compartments as generally outlined in the
ICRP model (1972, 1979). The bone is assumed to
be composed of a structural component associated
with bone volume, which includes the compact
cortical bone, a large portion of the cancellous
(trabecular) bone, and a metabolic component
associated with bone surfaces. In effect, three
compartments are then identified, two within

_the bone volume and one within the bone surface.

The bone volume is associated with mechanical
structure and integrity of the bone, and the bone
surface is involved with the metabolic
regulation of extracellular calcium. Much use is
made of general data about age-dependent bone
formation within these compartments and,
consequently, this model is not as dependent on
radionuclide-specific data as the other models. .



We will not discuss further details of these
models but refer the reader to the original
articles and their associated references for

additional discussion and clarification. Doses
listed in this paper are from the Leggett model.

Results of Dose Calculations for Rongelap Atoll

Cesium-137 Dose Equivalent

The dose-equivalent rate calculated for
Rongelap Island using the age-dependent model
for estimating the 137Cs body burden is shown in
Fig. 3. The age-dependent intake of 137Cs is as
described in the "Intake of 995r and 137Cs"
section of the paper for birth (424 pCi/d),
4 months (556 pCi/d), 9 months (773 pCi/d),
1.5y (517 pCi/d), 4 y (594 pCi/d), 12 y
(761 pCi/d), and 18 y (1085 pCi/d), with the
continuous intake in subsequent years decreasing
by radiological decay (i.e., T2 = 30 y for 137Cs).
The maximum annual dose-equivalent rates_for
intake at the beginning of each age range are
listed in Table 7. They are birth, 38 mrem;
" 4 months, 50 mrem; 9 months, 15 mrem; 1.5 y,
16 mrem; 4 y, 16 mrem; 12 y, 20 mrem; adult,
22 mrem. Thus, the estimated maximum annual
dose equivalent for adults is less than for intake
beginning at birth or at 4 months but is about the

same as that for intake beginning at all other
ages. The annual dose rate in the second year
when intake begins at birth or at 4 months drops
from the first year doses of 38 mrem and 50 mrem
to about 16 mrem. This result is similar to that
described by linuma et al. (1969) for the
Japanese data where the doses to infants and
children based on whole-body counting were less
than adult doses.

The integral 30-, 50-, and 70-y dose
equivalents are also listed in Table 7 for each
age. The integral 30-y dose equivalent for
intake starting at each age range is as follows:
birth, 377 mrem; 4 months, 389 mrem; 9 months,
358 mrem; 1.5 y, 361 mrem; 4 y, 382 mrem; 12 y,
459 mrem, and 18 y, 504 mrem. The corresponding
integral 50-y dose equivalents are birth,
567 mrem; 4 months, 579 mrem; 9 months,
547 mrem; 1.5 y, 551 mrem; 4 y, 572 mrem; 12 y,
649 mrem, and 18 y, 693 mrem. Thus, the integral
30- and 50-y dose equivalent calculated for

Table 7. The integral 30-, 50-, and 70-y effective dose equivalent and maximum annual effective dose-
equivalent rate for continuous intake of 137Cs beginning at various ages.

Integral dose equivalent Maximum
(mrem) dose-equivalent rate
Age intake begins 30y 50y 70y (mrem/y)
Birth 377 567 686 38
4 months 389 579 698 50°
9 months 358 547 667 15
15y 361 551 671 16
4y 382 572 692 16
2y 459 649 769 20
18y 504 693 813 22
5000171 17
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Figure 3. The annual dose equivalent from ingestion of 137Cs beginning at different ages; (a) shows
lifetime dose equivalent rates and (b) shows an expanded view of (a) for the first 30 y of exposure.
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intake beginning as adults always exceeds that
calculated for intake beginning at any other age.

To determine the consequence of equal
intake of 137Cs for each age, the dose equivalent
for an initial intake of 1000 pCi/d was
calculated for each age group. The results are
listed in Table 8. Even for the extreme case of
equal, continuous intake for each age group
(which does not occur under real dietary
conditions) with the annual intake declining at
a rate determined by the radiological half-life
of 137Cs, the integral 30-, 50- or 70-y dose
equivalents are very similar regardless of when
‘the age intake begins. The results for the
integral 50-y dose equivalent for intake
beginning at each age range are birth, 688 mrem;
4 months, 690 mrem; 9 months, 619 mrem; 1.5y,
619 mrem; 4 y, 622 mrem; 12 y, 633 mrem; and
18 y, 640 mrem.

Recent changes in the modeling and
dosimetry for 137Cs used by the United Kingdom
show that the effective committed dose
equivalent per single unit intake of 137Cs is the
same regardless of the age of intake (Kendall
et al., 1986). '

Table 8. The integral 30-, 50-, and 70-y
effective dose equivalent for equal (1000 pCi/d)
initial and continuous intake of 137Cs starting
at various ages.

Integral dose equivalent,

(mrem)
Age intake begins 30y S0y 0y
Birth 513 688 794
4 months 515 690 801
9 months 444 619 729
15y 444 619 729
4y 447 622 732
12y 458 633 743
18y 465 640 750
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Strontium-90 Dose Equivalent

Strontium-90 is primarily deposited in the
bone after ingestion, and the two major organs
receiving exposure are the bone marrow and the
bone surface cells. The annual dose equivalent
from the ingestion of 99Sr beginning at different
ages is shown in Fig. 4. The maximum annual
dose equivalent to the bone marrow is about
2 mrem/y, and this occurs when 90Gr intake
begins at ages 12 and 18.

The integral 30-, 50-, and 70-y dose
equivalent to bone marrow and bone surface are
listed in Table 9. The integral dose equivalent
is very similar for all ages. For example, the
50-y integral dose equivalent ranges from 60 to
70 mrem for bone marrow and from 150 to
200 mrem for bone surface depending on when the
age intake begins. The highest dose comes when
intake begins at age 12.

The integral 30-, 50-, and 70-y effective
dose equivalent due to the intake of 905r is also
listed in Table 9 and ranges from 8.6 to 10 mrem
for 30 y, 12.9 to 14.4 mrem for 50 y, ard 15.7 to
17.3 mrem for 70 y. '

Total Effective
(137Cs + 90Sr)

Dose Equivalent

The total integral 30-, 50-, and 70-y
effective doses from the ingestion of 137Cs and
905y at Rongelap Island are listed in Table 10.
The integral 30-y effective dose ranges from
about 370 mrem to about 510 mrem, the integral
50-y effective dose ranges from about 560 mrem
to about 700 mrem, and the integral 70-y
effective dose ranges from about 630 mrem to
about 830 mrem. Of the total estimated dose
equivalent due to the ingestion of 205r and 137Cs,
the 90Sr contributes only 2 or 3%, while 137Cs
contributes 97 to 98%.
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Table 9. The integral 30-, 50-, and 70-y dose equivalents for bone marrow and bone surfaces for intake of

905y beginning at various ages.

Integral dose equivalent, mrem

Bone marrow

Bone surface Effective

Age intake begins 0y S0y 0y

30y Ny 0y 30y Ny 70y

Birth 414 62.0 75.0 122 182 223 8.6 12.9 157
4 months 41.7 62.5 75.6 123 184 224 8.7 13.0 15.8
9 months 43.1 63.7 76.6 127 187 227 9.0 133 160
15y 43.8 64.3 771 129 189 229 9.1 134 16.1
4y 43.2 64.0 77.0 126 187 228 9.0 13.3 16.1
12y 49.3 704 83.5 137 199 241 10.0 14.4 17.3
18y 48.5 69.8 82.9 116 175 217 9.3 13.6 16.5

Table 10. The integral 30-, 50-, and 70-y effective dose equivalent for continuous intake of 137Cs and

20Sr beginning at various ages.

Integral effective dose equivalent,

mrem? Fraction due to 90Sr
Age intake begins 0y . 50y 70y Ny 50y 70y
Birth 386 580 702 0.02 0.02 0.02
4 months - 398 592 714 0.02 0.02 0.02
9 months 367 560 " 683 0.03 0.02 0.02
15y 370 564 687 0.03 0.02 0.02
4y 391 585 708 0.02 0.02 0.02
12y 469 663 786 0.02 0.02 0.02
18y 513 705 829 0.02 0.02 0.02

& The effective dose equivalent is a unit defined by the ICRP (1984) which allows for the different

mortality risks associated with irradiation of different organs, together with a proportion of the

hereditary effects.

Discussion

The result of our analysis is that the
integral 30-, 50-, and 70-y effective dose
equivalent estimated for intake beginning as
adults at a contaminated atoll is greater than
that for intake beginning at any other age.
Consequently, the estimated integral dose
equivalent for adults is a conservative estimate
for infants and children. There are two basic
reasons for this result. The first, and major,
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reason is the consistently higher intake of local
foods, and thus 137Cs , for adults found in the
diet surveys from the Marshall Islands. Also,
the higher intake of food in general by adults is
supported by diet surveys of other societies; the
intake for adults is greater than for infants and
children.

The second reason is that even for continuous
137Cs intake that declines at a rate equal to the



radiological half-life of 137Cs and where the
initial intake is the same regardless of age, the
integral 30-, 50-, and 70-y dose equivalents are
slightly greater when intake begins as an adult
than for intake beginning at any other age. This
results from the combination of changing body
weights, fractional deposits, and biological
half-life for 137Cs with age and the reduced
concentration of 137Cs in food with time. For
example, when intake begins as an infant, the
137Cs  concentration in food has declined by
about 35% by the time the infant reaches 18 y of
age, when the dietary intake is greater and the
biological half-life of 137Cs longer.
Consequently, if the intake of 137Cs for an infant
or child were equal to that for the adult (which
it is not based on available dietary information
from the Marshall Islands), the estimated
integral 30-, 50-, and 70-y dose equivalent wouid
still be similar to that estimated for adults.

In the case of Sr, the dose commitment per
unit intake is greater by about a factor of 5 for
intake beginning at ages 0 to 5 y than for intake
beginning as an adult. However, when age-
dependent differences in intake of 90Sr via the
diet are accounted for, the estimated integral

30-, 50-, and 70-y dose equivalents are less when
intake begins as an infant or child than when
intake begins as an adult.

Even if the %0Sr intake for infants and
children were significantly higher than what
we have estimated, the total integral 30-, 50-,
and 70-y effective dose equivalent from both
137Cs and 995r would be greater for adults than
for infants and children because 137Cs accounts
for about 97% of the total estimated effective
dose equivalent at the atolls via the ingestion
pathway and %0Sr for less than 3%.

Doses from 137Cs and %0Sr are insignificant
through the inhalation pathway as compared
to that via ingestion (Robison et al., 1987; ICRP,
1979; Cristy et al., 1984; Kendall, 1986).
Consequently, the relative magnitude of the
integral dose equivalent among
children, and adults can be determined by
evaluating the ingestion pathway; that
analysis indicates that the estimated effective
integral dose equivalents for adults due to
ingestion of 137Cs and 90Sr is a conservative
estimate for intake beginning in infancy and.
childhood.

infants,
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Appendix A:
Concentration of Radionuclides in Foods in pCi/g,
Food Intake in g/d, and Radionuclide Intake in pCi/d by Age Group
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